HEC 26 Aquatic Organism Passage Design Manual Evolution & Application

Sven Leon, P.E., Hydraulics Engineer Federal Highway Administration

2015 Alaska Fish Passage Meeting

October 13 – 14, 2015

VTRC, Juneau, Alaska

Presentation Outline

HEC 26 Purpose & History # HEC 26 Contents **#**13–Step Design Procedure Summary Focus on Steps 6-9 **#** Case History Comparisons **#** Design Method Limitations **T** Conclusions

HEC 26 Purpose

Culvert Design for Aquatic Organism Passage (AOP) (HEC 26)

- Provide a quantitative stream simulation design procedure
- **#** Incorporate geomorphic-based design

HEC – Hydraulic Engineering Circular

HEC 26 Development History

FHWA Published October 2010

- Technical Advisory Committee (7)
 - US Forest Service (3)
 - National Marine Fisheries Service
 - California Department of Fish and Game
 - Maryland State Highway Administration
 - Maine Department of Transportation
- **♯** FHWA Review Panel (10)
 - Ecologist, Biologist, Environmental Specialists (4)

HEC 26 Contents

- **#**2. Barrier Mechanisms
- **#** 3. AOP Culvert Assessment & Inventory
- #4. Fish Biology
- **#** 5. Passage Hydrology
- **#**6. Stream Geomorphology
- **#**7. Design Procedure
- **#**8. Construction
- **#**9. Post Construction

HEC 26 Design Method Goals

- Culvert designs providing successful aquatic organism passage via stream simulation approach
- Culvert designs satisfying peak hydraulic standards/criteria for protecting traveling public
- **#** Objective procedure yielding reproducible results
- **H** Universal applicability, use anywhere
- **#** Efficient procedure, easy to apply
- **#** Defensible results for justifying expenditures
- **I**Interdisciplinary acceptance

HEC 26 Approach

- Premise: Stream bed materials experience same forces as aquatic organisms. If bed behavior in a culvert is similar to the channel during passage flows, organisms that pass stream can pass culvert.
- Objective: Create sediment mobility conditions within the culvert that *simulate* those in the natural channel in both structure and function for the range of passage flows.

Required Variables

■ Peak design flow (Q25, Q50, Q100)

- **High passage design flow**
- **#** Low passage design flow
- Bed material gradation (D16, D84, D95)
- **#** Bed material permissible shear stress

Applied Tests

Does culvert satisfy peak flow requirements?

- **I** Is bed material in culvert stable for:
 - high passage design flows?
 - peak design flows?

Is velocity in culvert for high passage design flows consistent with upstream and downstream channels?

Applied Tests (cont.)

Is depth in culvert for low passage design flows consistent with upstream and downstream channels?

Tools Required / Available

Culvert hydraulics HEC-RAS HY-8/Normal depth computations **#** Channel hydraulics HEC-RAS Normal depth computations **#** HEC 26 spreadsheet (iterative computations, gradation plotting, and data management)

Design Procedure Summary

Step 1: Determine Discharges Q_L, Q_H, Q_P
Step 2: Define Project Reach and Determine Channel Characteristics

Bed material

Step 3 and 4: Evaluate Channel Stability
Step 5: Identify initial trial culvert

Determine embedment depth

Step 6. Is Culvert Bed Stable at Q_H?

H Compute *permissible* shear stress

- Modified Shields equation (function of D₈₄ and D₅₀)
- Bathurst critical unit discharge equation
- USDA equation for cohesive materials
- **#** Compute maximum *applied* shear stress at:
 - Inlet, outlet of culvert and normal depth
 - Upstream and downstream cross-sections

$$\tau = \gamma y S_e$$

Step 6 (cont.) Is Culvert Bed Stable at Q_H?

Accuracy of applied shear computations

- Accurate depth and energy slope
- Accurate Manning's roughness

Manning's roughness

- *Compute* Manning's 'n' for bed D₈₄ (<u>Iterative Procedure</u>)
 HEC 26 Spreadsheet
- Select Manning's n for culvert walls
- *Compute* composite Manning's n for culvert

Step 7. Check Channel Bed Mobility at Q_H

 If maximum shear stress in <u>any</u> channel XS is less than permissible, culvert shear must be equal or less than permissible.

If not, redesign culvert

- If maximum shear stresses in <u>all</u> channel XS are greater than permissible, bed is considered mobile (common for sand beds).
 - Culvert shear must be within channel range. If exceeds range, redesign culvert

Step 8. Check Culvert Bed Stability at Q_P

Few sites will exhibit natural bed stability at Q_P due high shear of contracted flow
 Compute applied shear for Q_P and compare

- to permissible shear for natural bed material
 - Repeat iterative procedure for Manning's 'n'
- **#** If bed not stable, design a stable sublayer.

Step 9. Design Stable Bed for Q_P

Provide well-graded, oversized sublayer to resist shear at Qp, provide grade control and a rough surface to aid replenishment of native materials.

H Minimum Thickness Criteria for sublayer

 Identify maximum oversize gradation that will fit thickness criteria for culvert

Step 9 (cont.). Design Stable Bed for Qp

- Repeat permissible shear computations for sublayer
- Compute applied shear for Qp and compare to permissible shear for oversize sublayer
 - Repeat iterative procedure for Manning's 'n'
- **#** If oversize layer not stable, redesign culvert.

Procedure Summary (cont.)

If Step 10 Check: Compare Culvert and Channel Velocities for Q_H
If culvert ≤ channel, Ok. If not, redesign.
If Step 11 Check: Compare Culvert and Channel Depths for Q_L
If culvert ≥ channel, Ok. If not, go to Step 12.
If step 12: Design a low-flow channel.

Step 13. Review Design (HEC Example)

■ Original 36" CMP

\$\$ 8.5 ft CMP
\$\$ 2.6 ft Embedment
\$\$ 1.0' Natural layer
\$\$ 1.6' Oversize layer
\$\$ 1.6' Oversize layer
\$\$ Constructability
\$\$ Service life
\$\$ Other shapes or materials?

Case History Comparisons

和大学的代表的	North Thompson	Tributary to Bear	Sickle Creek,
	Creek, Colorado	Creek, Alaska	Michigan
AOP barrier/	3-ft CMP	5-ft CMP	Twin 3-ft CMPs
Existing			
As-built	12'x ? squash pipe	9.75'x 6.6' pipe arch	16'x 6' concrete arch
	国家大学会社会议		bridge
HEC-26 procedure	8.5' CMP	12' CMP	10' CMP
Difference in span	-3.5 ft	+2.25 ft	-6 ft
Bankfull Width	8 - 17	7 - 11	not available
Estimate (ft)		2 PARAMESTAL	式字符号的12s万

Design Method Limitations

- Tools rely on 1-D energy & momentum equations that may not be appropriate for natural channels or channels inside culverts
- # Estimating friction and energy losses
 correctly
- **#** Estimating bed material gradation correctly
- Not appropriate for degrading or aggrading streams

Design Method Limitations (cont.)

- # Optimizing culvert size results in small embedment depth
- Embedment depth may not allow much natural channel profile lowering

Design Method Limitations (cont.)

- Requirement for stable bed at peak design flow will often dictate an oversized layer below the natural layer
- When natural layer scours, oversized layer may become exposed and restrict AOP passage

Conclusions

- HEC 26 stream simulation procedure results in larger openings than "hydraulic" design procedures
- WFLHD not allowed by the resource agencies to use approach
- Additional work needed to check/update procedure
- Monitoring needed to determine ultimate success of any AOP culvert design

■ Did design method meet goals?