BLovement of Dolly Verulen sund Cutthroat in Eligh-Gradient Headwater Streams

M. D. Bryant ${ }^{1}$, M. D. Lukey ${ }^{2}$, J. McDonell ${ }^{3}$, and Richard Aho ${ }^{3}$

1	Douglas Island Aquatic Ecology
2	USDA Forest Service, Pacific Northwest Research Station
3	USDA Forest Service, Stikine Area Tongass National Forest

Purpose

Section 33, Code of Federal Regulations 323.3(b), Clean Water Act (1987) states; "the design, construction and maintenance of the road crossing shall not disrupt the migration or other movement of those species of aquatic life inhabiting the water body." The Tongass Forest Plan Standards and Guidelines state: "maintain, improve, and restore the opportunities for fish migration" in Class I and II streams.

Approximately 1,200 Culverts

in Dolly Varden and cutthroat streams do not meet the fish passage standards.
Cost to repair is estimated to be over $\$ 70$ million.
(As of a few years ago)

Cosis

- Determine when fish move (season) and at what stream stages -discharge
$>$ Provide quantitative data for the design of culvert to meet fish passage standards
Objectives

Describe the size and species of fish that move

Identify seasonal movement

Determine the relationship between
fish movement and discharge

Approsch to the Problem
$>$ Focus on Dolly Varden and cutthroat trout
$>$ Intensive efifort in one stream
$>$ Use PIT tags and a fixed antenna system
$>$ Relate movement to stream stage

Location

Figure 1. Map of Hobo Creek

Study site: Elobo Creek

$>$ Small $2^{\text {nd }}$ order stream

$>$ Population of Dolly Varden \& cufthroat trout
$>$ High gradient (2\%-10\%)

Myethods

$>$ Identify location where fish were tagged within 10 m intervals.
$>$ Periodically sample fish population to record movement, size, and tag additional fish.

MIethods

Place PIT tags in Dolly Varden and cutthroat trout $>65 \mathrm{~mm}$.
$>$ Use weirs with paired antennas to record time fish moved upstream or downstream

Methods

$>$ As fish pass through antenna
$>$ Jag number recorded
$>$ Date and time recorded
$>$ Direction determined by time sequence at paired antenna
$>$ Stream stage and date and time recorded at stage recorder located at about 20 m
> Fish data and stage (converted to discharge) data merged

Resulits

How big are the fish?

$>$ What proportion moves vs. stays?
$>$ How far do they move?
$>$ How does discharge afiect movement?

Length Frequency Distribution

Fish less than 65 mm were not tagged
$>$ Few fish greater than 150 mm captured

Cutthroat mode about 110 mm .

Dolly Varden mode about 90 mm

Cutthroat Trout

Dolly Varden

Movers sud Stayers

Cutthroat trout

Movers and Stayers

Dolly Varden

Flow isur do they moye?

Dolly Varden

Flow itir do they move?

Cutthroat Trout

Mean Monthly Discharge Hobo Greek

Mean discharge ofs

Peak Monthly Discharge Hobo Creek

Maximum discharge

cfs

Cutthroat trout

Downstream

Upstream

Dolly Varden

Downstream

Upstream

Movement Lengith and Discharge

Cuthroat trout

Movement

Lengith anid Discharge

Dolly Varden

Moyersent by Discharge Jnteryals

Cumulative Percent of cutithroat trout detected

Cutthroat trout

Cumulative Percent of Dolly Varclers ofecected

Dolly Varden

Movement

zlfal
 Exceedance Flows

Cumulative Percent

Summary/Conclusions

$>$ Most Dolly Varden and cutthroat trout were < 100 mm
$>$ Between 20 to 40 percent of Dolly Varden and cutthroat trout moved between sample periods

- Most fish moved a relatively short distance ($<20 \mathrm{~m}$), but a few moved $>200 \mathrm{~m}$.
$>$ Movement was seasonal.

Summary/Conclusions

$>$ Movement clustered between 0.4 and 5.0 cis (less than bankfull).
$>$ Most fish were detected moving at discharge <20 cfs.
$>$ More than 95% of the fish detected moving upstream moved during flows that were exceeded 85% of the time.

Managensent Appljeations

$>$ Reasonably confident that we can detect fish moving at high flows-monitoring methodology.
$>$ Proportion of fish moving is relative to stream flow (Exceedance flows).
$>$ Relatively few fish move at flow that are exceeded more than 5% of the time.
$>$ Contribute to the design of new culverts.
$>$ Prioritize culverts that may restrict movement.

