Discharge models in the Gulf of Alaska Region							
Author	Spatial scale (km)	Temporal scale (mo)	Product (discharge)	Method	Inputs	Delivery	Suitability
Hill et al. ¹	Watershed scale	Monthly	Monthly discharge	Statistical	Precipitation, temperature, watershed properties (elevation, glacier cover)	Regression equations specified in publication	Ideal for monthly time series of discharge. Since regression equations were based on historic data, their suitability for future projections is questionable.
Beamer et al. ²	1 km	Daily	Discharge, snow covered extent, snow-water- equivalent, evapotranspirati on, ice-melt,	Physical-based	Precipitation, temperature, wind speed and direction, humidity, terrain model,	Data are served at AOOS. Daily- flow hydrographs are	This physically- based energy- balance model can be driven by either historical weather & land cover data or

¹ Hill, D.F., Bruhis, N., Calos, S.E., Arendt., A., Beamer, J., 2015, "Spatial and Temporal Variability of Freshwater Discharge into the Gulf of Alaska," Journal of Geophysical Research, v.120(2), pp.634-646.

² Beamer, J., Hill, D.F., Arendt, A., Liston, G., 2016, "High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed," Water Resources Research, in press.

³ Curran, J.H., Barth, N.A., Veilleux, A.G., and Ourso, R.T., 2016, Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012: U.S. Geological Survey Scientific Investigations Report 2016–5024, 47 p., http://dx.doi.org/10.3133/sir20165024.

⁴Wiley, J.B., and Curran, J.H., 2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p.

			snow-melt, snow-rainfall partitioning	land cover data, soil data	downloadable at any model grid cell.	future weather & land cover data. It is suitable for climate change studies of streamflow.
Curran et al. ³	Watershed scale	Annual	Flood frequency (P-percent annual exceedance probability discharge)	Drainage area, precipitation (PRISM 1970- 2000)	Regression equations specified in publication; spreadsheet tool provided. StreamStats houses statistics for USGS gages statewide and computes regression equations for Cook Inlet Basin.	Standard tool for estimating flood frequency at gaged or ungaged streams, commonly for design purposes. Statistical model based on correlation of historical streamflow and historical basin characteristics. Not suitable for future projections.
Wiley and Curran⁴	Watershed scale	Monthly, seasonal	High-duration flow, low- duration flow, and low-flow frequency statistics	Drainage area, precipitation (Jones and Fahl, 1993), elevation, glacier cover	Regression equations specified in publication.	Produces estimates of high-flow and low-flow statistics for ungaged streams. Statistical model based on correlation of historical streamflow and historical basin characteristics. Not suitable for future projections.

NA		N A a sa tala la s	Dura off an our		Duratultation	lattice of the table of the	
Moore, et	Gridded, has	Monthly	Runoff, snow		Precipitation,	https://github	Hydrologic regime in
al. ⁵	typically		cover, snow		temperature,	<u>.com/jwtrubil/</u>	~10 to 10000 km ²
	been run at		water equivalent.		landcover (3	DCWBM,	watersheds can be
	400 m		Extendable to ET,		forest classes,	Regime for	predicted with
	resolution		PET		open, lake,	central coast	reasonable accuracy
					glacier).	of BC:	by taking mean
					Typically used	http://www.m	monthly runoff
					climate	apservices.ca/	values for full area.
					normal to	EBM/ (Model	Conceptual model
					drive model,	2 in	may be applicable
					also GCM	hydrological	for future climate
					output	typing and	scenarios.
						discharge,	
						transboundar	
						y)	
Shanley	Watersheds	Monthly	Mean Monthly	Statistical	Basin Area,	Regression	Regional index of
and Albert ⁶	HUC 10	-	and 2080s		Monthly	equations,	predicted hydrologic
			Forecasts		Temp/Precip,	maps, and	change
					Elevation,	tables in	-
					Lakes,	online, open-	
					Glaciers, 3	access journal.	
					GCMs	All GIS data	
						available upon	
						request:	
						http://journal	
						s.plos.org/plo	
						sone/article?i	
						d=10.1371/jo	
						<u>urnal.pone.01</u>	
						04799	
						<u></u>	

Orsborn	12	QAM QAA	Basin area	Regression	
and Storm	12		(sqmi), and a	eqs in	
7			basin relief	publication	
				publication	
			parameter (H)		
			which is the		
			difference		
			between		
			watershed		
			outlet		
			elevation and		
			the saddle		
			above the		
			upper-end or		
			head of the		
			main-stem of		
			the primary		
			channel. The		
			square root of		
			the product of		
			these two		
			parameters		
			provides a		
			basin		
			"energy" term		
			((AH) 1/2),		

OTT	12	QAM QAA	Basin Area	Regression
Engineerin			(sqmi), Mean	eqs in
g ⁸			Annual and	publication
B				publication
			Monthly	
			Precip (model	
			specfic data)	
			(inches), Ratio	
			of Basin Area	
			above	
			Treeline (%),	
			Ratio of basin	
			area in main	
			channel lakes	
			(%), Slope of	
			main channel	
			(ft/1000ft),	
			Mean basin	
			elevaiton (ft),	
			Distance form	
			the GOA (mi)	
Park and	12	QAA	Basin area	Regression
Madison ⁹			(sqmi), Mean	eqs in
			annual Precip	publication
			(inches)	publication
			(inclies)	

⁴Wiley, J.B., and Curran, J.H., 2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p.

⁵Moore, R.D., Trubilowicz, J.W. and Buttle, J.M. (2012), Prediction of Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed Monthly Water Balance Model. Journal of the American Water Resources Association, 48: 32–42. doi: 10.1111/j.1752-1688.2011.00595.x

⁶ Shanley, C.S., and D.M. Albert. 2014. Climate change sensitivity index for Pacific Salmon habitat in Southeast Alaska. PLoS ONE 9(8): e104799. doi:10.1371/journal.pone.0104799

⁷ Orsborn, J. F., Storm M. C., (1991) *Hydrologic Models for Estimating Streamflows on the Tongass and Chugach National Forests in South-East and South-Central Alaska,* USDA Forest Service, Region 10, Juneau, AK

⁸ OTT Water Engineering, INC., (1979) Water Resources Atlas for USDA Forest Service Region X, Juneau, Alaska

⁹ Parks, B; Madison, RJ, (1985) *Estimation of the Flow and Water-Quality Characteristics of Alaskan Streams*, U.S. Geological Survey Water-Resources Investigations Report 84-4247

Author-Primary author

Spatial scale-Resolution of the grid or polygon used for modeling (30m, 400m, 800m, 1km, etc.)

Temporal scale-Historical normal input range

Product-What does the model predict in terms of discharge values: Daily, Monthly, Annual runoff, other?

Method-Modeling approach: Statistical (regression); conceptual (degree day/temperature index); Physical (energy-balance)

Inputs-What data are used to run the model.

Delivery-Mode of data deliver

Suitability-Application and suitability for future prediction